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Abstract— Cloud Computing is emerging as a new 
computational paradigm shift.Hadoop  MapReduce has 
become a powerful Computation  Model for processing large 
data on distributed commodity hardware clusters such as 
Clouds. MapReduce is a programming model developed for 
large-scale analysis. It takes advantage of the parallel 
processing capabilities of a cluster in order to quickly process 
very large datasets in a fault-tolerant and scalable manner. 
The core idea behind MapReduce is mapping the data into a 
collection of key/value pairs, and then reducing over all pairs 
with the same key. Using key/value pairs as its basic data unit, 
the framework is able to work with the less-structured data 
types and to address a wide range of problems. In Hadoop, 
data can originate in any form, but in order to be analyzed by 
MapReduce software, it needs to eventually be transformed 
into key/value pairs.In this paper we implements MapReduce 
programming model using two components: aJobTracker 
(masternode) and many TaskTrackers (slave nodes). 
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1.INTRODUCTION 
'cloud' is an elastic execution environment of resources 
involving multiple stakeholders and providing a metered 
service at multiple granularities for a specified level of 
quality of service to be more specific, a cloud is a platform 
or infrastructure that enables execution of code (services, 
applications etc.), in a managed and elastic fashion, 
whereas “managed” means that reliability according to 
predefined quality parameters is automatically ensured and 
“elastic” implies that the resources are put to use according 
to actual current  requirements observing overarching 
requirement definitions implicitly, elasticity includes both 
up and downward scalability of resources and data, but also 
load balancing of data throughput with Google Docs. Due 
this combinatorial capability, these types are also often 
referred to as “components”  
 
Cloud) Infrastructure as a Service (IaaS) also referred to 
as Resource Clouds provide (managed and scalable) 
resources as services to the user in other words, they 
basically provide enhanced virtualisation capabilities. 
Accordingly, different resources may be provided via a 
service interface:Data & Storage Clouds deal with reliable 
access to data of potentially dynamic size, weighing 
resource usage with access requirements and / or quality 
definition.  
Examples 
Amazon S3, SQL Azure 
 

Compute Clouds provide access to computational resources, 
i.e. CPUs. So far, such low-level resources cannot really be 
exploited on their own, so that they are typically exposed as 
part of a “virtualized environment” (not to be mixed with 
PaaS below), i.e. hypervisors. Compute Cloud Providers 
therefore typically offer the capability to provide 
computing resources (i.e. raw access to resources unlike 
PaaS that offer full software stacks to develop and build 
applications), typically virtualised, in which to execute 
cloudified services and applications. IaaS (Infrastructure as 
a Service) offers additional capabilities over a simple 
compute service. 
Examples 
Amazon EC2, Zimory, Elastichosts 
 
(Cloud) Platform as a Service (PaaS): provide 
computational resources via a platform upon which 
applications and services can be developed and hosted. 
PaaS typically makes use of dedicated APIs to control the 
behaviour of a server hosting engine which executes and 
replicates the execution according to user requests (e.g. 
access rate). As each provider exposes his / her own API 
according to the respective key capabilities, applications 
developed for one specific cloud provider cannot be moved 
to another cloud host there are however attempts to extend 
generic programming models  with cloud capabilities (such 
as MS Azure). 
Examples 
 Force.com, Google App Engine, Windows Azure 
(Platform) 
 
Clouds) Software as a Service (SaaS) also sometimes 
referred to as Service or Application Clouds are offering 
implementations of specific business functions and 
business processes that are provided with specific cloud 
capabilities, i.e. they provide applications / services using a 
cloud infrastructure or platform, rather than providing 
cloud features themselves. Often, kind of standard 
application software functionality is offered within a cloud.  
Examples 
Google Docs, Salesforce CRM, SAP Business by Design. 
Overall, Cloud Computing is not restricted to Infrastructure 
/ Platform / Software as a Service systems, even though it 
provides enhanced capabilities which act as (vertical) 
enablers to these systems. As such, I/P/SaaS can be 
considered specific “usage patterns” for cloud systems 
which relate to models already approached by Grid, Web 
Services etc. Cloud systems are a promising way to 
implement these models and extend them further 
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TECHNICAL ASPECTS: 
The main technological challenges that can be identified 
and that are commonly associated with cloud systems are 
Virtualisation is an essential technological characteristic 
of clouds which hides the technological complexity from 
the user and enables enhanced flexibility (through 
aggregation, routing translation).  
Multitenancy is a highly essential issue in cloud systems, 
where the location of code and / or data is principally 
unknown and the same resource may be assigned to 
multiple users (potentially at the same time). This affects 
infrastructure resources as well as data / applications / 
services that are hosted on shared resources but need to be 
made available in multiple isolated instances. Classically, 
all information is maintained in separate databases or tables, 
yet in more complicated cases information may be 
concurrently altered, even though maintained for isolated 
tenants. Multitenancy implies a lot of potential issues, 
ranging from data protection to legislator issues  
Security Privacy and Compliance is obviously essential in 
all systems dealing with potentially sensitive data and code. 
Data Management is an essential aspect in particular for 
storage clouds, where data is flexibly distributed across 
multiple resources. Implicitly, data consistency needs to be 
maintained over a  wide distribution of replicated data 
sources. At the same time, the system always needs to be 
aware of the data location (when replicating across data 
centres) taking latencies and particularly work-load into 
consideration. As size of data may change at any time, data 
management addresses both horizontal and vertical aspects 
of scalability. Another crucial aspect of data management is 
the provided consistency guarantees (eventual vs. strong 
consistency, transactional isolation vs. no isolation, atomic 
operations over individual data items vs. multiple data 
times etc.). 
APIs and / or Programming Enhancements are essential to 
exploit the cloud features: common programming models 
require that the developer takes care of the scalability and 
autonomic capabilities him/ herself, whilst a cloud 
environment provides the features in a fashion that allows 
the user to leave such management to the system 
Metering of any kind of resource and service consumption 
is essential in order to offer elastic pricing, charging and 
billing. It is therefore a precondition for the elasticity of 
cloud.Tools are generally necessary to support 
development, adaptation and usage of cloud services 
 

2.RELATED WORK 
2.1 HADOOP 
Hadoop is an open-source framework for writing and 
running distributed applications that process very large data 
sets. There has been a great deal of interest in the 
framework, and it is very popular in industry as well as in 
academia. Hadoop cases include: web indexing, scientific 
simulation, social network analysis, fraud analysis, 
recommendation engine, ad targeting, threat analysis, risk 
modeling and other. Hadoop is core part of a cloud 
computing infrastructure and is being used by companies 
like Yahoo, Facebook, IBM, LinkedIn, and Twitter. The 

main benefits of Hadoop framework can be summarized as 
follows: 
 Accessible: it runs on clusters of commodity servers 
 Scalable: it scales linearly to handle larger data by adding 

nodes to   the cluster 
Fault-tolerant: it is designed with the assumption of 

frequent hardware failures 
 Simple: it allows user to quickly write efficiently parallel  

code 
 Global: it stores and analyzes data in its native format 
Hadoop is designed for data-intensive processing tasks and 
for that reason it has adopted a move- code-to-data" 
philosophy. According to that philosophy, the programs to 
run, which are small in size,Are transferred to nodes that 
store the data. In that way, the framework achieves better 
performance and resource utilization. In addition,  
Hadoop solves the hard scaling problems caused by large 
amounts of complex data. As the amount of data in a 
cluster grows, new servers can be incrementally and 
inexpensively added to store and analyze it. 
Hadoop has two major subsystems: the Hadoop Distributed 
File System (HDFS) and a distributed data processing 
framework called MapReduce. Apart from these two main 
components, Hadoop has grown into a complex ecosystem, 
including a range of software systems. Core related 
applications that are built on top of the HDFS are presented 
in Figure 2.1 and a short description per project is given in 
Table 2.1.1.  

 
Figure 2.1: Hadoop Ecosystem 

Project Info 

Hdfs Hadoop distributed file system 

Map reduce Distributed computation framework 

Zookeeper High-performance collaboration service 

Hbase Column-oriented table service 

Pig Dataflow language and parallel execution 

Hive Data warehouse infrastructure 

Hcatalog Table and storage management service 

Sqoop Bulk data transfer 

Avron Data serialization system 

Table 2.1.1: Project Descriptions 
 

 
Figure 2.1.2 A Typical Hadoop cluster 
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3. HDFS 
Hadoop comes with a distributed file system called HDFS  
which stands for Hadoop Distributed File System. HDFS 
manages the storage of files across the cluster and enables 
global access to them.In comparison to other distributed 
file systems, HDFS is on purpose implemented to be fault-
tolerant, and to conveniently expose the location of data 
enabling Hadoop framework to take advantage of the 
move-code-to-data philosophy.HDFS is optimized for 
storing large files, for streaming the files at high bandwidth, 
for running in commodity hardware. While HDFS is not 
performing well when the user application requires low-
latency data access, when there are a lot of small files, and 
when the application requires arbitrary file modification. 
The file system is architected using the pattern write-once, 
read-many-times (simple coherency model). A dataset is 
generated once, and multiple analyses are performed on it 
during time. It is expected that the analysis will require the 
whole dataset, hence fully reading the dataset is more 
important than the latency of a random read. 
In HDFS, files are broken into block-sized chunks, which 
are independently distributed in a nodes. Each block is 
saved as a separate file in the node's local file system. The 
size of the block is large and a typical value would be 
128MB, but it is a value chosen per client and per file. The 
large size of the block was picked, firstly, in order to take 
advantage of sequential I/0 capabilities of disks, secondly 
to minimize latencies because of random seeks and finally 
because it is logical input size to the analysis framework. 
HDFS is also designed to be fault tolerant, which means 
that each block should remain accessible in the occur of 
system failures. The fault-tolerance feature is implemented 
through a replication mechanism. Every block is stored in 
more than one node making highly unlikely that it can be 
lost.By default, two copies of the block are saved on two 
different nodes in the same rank and a third copy in a node 
located in a different rank. The HDFS software continually 
monitors the data stored on the cluster and in case of a 
failure (node becomes unavailable, a disk drive fails, etc.) 
automatically restores the data from one of the known good 
replicas stored elsewhere on the cluster. 
3.1 NAMENODE 
The namespace of the filesystem is maintained persistently 
by a master node called namenode.Along with the 
namespace tree, this master node holds and creates the 
mapping between file blocks and datanodes. In other words, 
namenode knows in which node the blocks of a file are 
saved (physical location). The mapping is not saved 
persistently because it is reconstructed from the datanodes 
during start phase, and because it dynamically changes over 
time. The internal structure of a namenode is given in the 
Figure 3.1  

 
Figure 3.1  Namenode 

Holding the critical information (namespace, file metadata, 
mapping) in a unique master node rather node than in a 
distributed way makes the system simpler. However, at the 
same time it makes this node a single point of failure 
(SPOF) and creates scalability issues. From performance 
point of view, it is required that the namenode holds the 
namespace entirely in RAM and that it will respond fast to 
a client request. For reliability, it is necessary for the 
namenode to never fail, because the cluster will not be 
functional. The information that is stored in the namenode 
should also never be lost, because it will be impossible to 
reconstruct the files from the blocks. For the above 
reasons,Great effort has been made in order to maintain the 
master node, but at the same time to overcome the 
drawbacks. In past versions, it was a common tactic to 
backup the information either in a remote NFS mount or 
using a secondary namenode in which the namespace 
image was periodically merged and could replace the 
original in case of failure.  
3.2 DATANODE 
As has been implied before, the blocks of a file are 
independently stored in nodes, which are called datanodes. 
Every datanode in the cluster, during startup, makes itself 
available to the name node through a registration process. 
A part from that, each datanode informs namenode which 
blocks has in its possession by sending a block report. A 
block reports are sent periodically or when a change takes 
place. Furthermore, every datanode sends heartbeat 
messages to the namenode to confirm that it remains 
operational and that the data is safe and available. If a 
datanode stops operating, there are error mechanisms in 
order to overcome the failure and maintain the availability 
of the block.Heartbeat messages also hold extra 
information, which helps the namenode run the cluster 
efficiently (e.g. storage capacity which enables namenode 
to make load balancing). One important architectural note 
is that namenode never directly calls datanodes; it uses 
replies to heartbeats to order a command to be executed in 
the datanode (e.g. to transfer a block to another node). 

 
Figure 3.2.1 HDFS Architecture 

 
4.  MAP REDUCE 

MapReduce programming model using two components: a 
Job Tracker (masternode) and many Task Trackers (slave 
nodes). The Job Tracker is responsible for accepting job 
requests,for splitting the data input, for defining the tasks 
required for the job, for assigning those tasks to be 
executed in parallel across the slaves, for monitoring the 
progress and finally for handling occurring failures. The 
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Task Tracker executes tasks as ordered by the master node. 
The task can be either a map (takes a key/value and generates 
another key/value) or a reduce (takes a key and all associated 
values and generates a key/value pair). The map function can run 
independently on each key/value pair, enabling enormous 
amounts of parallelism. Likewise, each reducer can also run 
separately on each key enabling further parallelism.When a job is 
submitted to the Job Tracker, the Job Tracker selects a number of 
Task Trackers (not randomly but according to data locality) to 
execute a map task (Mappers) and a number of Task Trackers to 
execute a reduce task (Reducers). The job input data is divided 
into splits and is organized as a stream of keys/values records. In 
each split there is a matching mapper which converts the original 
records into intermediate results which are again in the form of 
key/value. The intermediate results are divided into partitions 
(each partition has a range of keys), which after the end of the 
map phase are distributed to the reducers .Finally reducers apply a 
reduce function on each key.  
 
4.1  MAP REDUCE COMPUTATION 
A MapReduce paradigm is given in Figure 4.1  MapReduce 
is designed to continue to work in the face of system 
failures. When a job is running, MapReduce monitors 
progress of each of the servers participating in the job. If 
one of them is slow in returning an answer or fails before 
completing its work, MapReduce automatically starts 
another instance of that task on another server that has a 
copy of the data. The complexity of the error handling 
mechanism is completely hidden from the programmer. 

 
Figure 4.1 A Map Reduce Computation 

 MapReduce is triggered by the map and reduce operations 
in functional languages,such as Lisp. This model abstracts 
computation problems through two functions: map and 
reduce. All problems formulated in this way can be 
parallelized automatically.Essentially, the MapReduce 
model allows users to write map/reduce components with 
functional-style code. These components are then 
composed as a dataflow graph to explicitly specify their 
parallelism. Finally, the MapReduce runtime system 
schedules these components to distributed resources for 
execution while handling many tough problems: 
parallelization, network communication, and fault tolerance. 
A map function takes a key/value pair as input and 
produces a list of key/value pairs as output. The type of 
output key and value can be different from input: 
map :: (key1; value1)  list(key2; value2)… (1) 
A reduce function takes a key and associated value list as 
input and generates a list of new values as output: 
reduce :: (key2; list(value2)) -> list(value3)… (2) 

A MapReduce application is executed in a parallel manner 
through two phases. In the first phase, all map operations 
can be executed independently from each other. In the 
second phase, each reduce operation may depend on the 
outputs generated by any number of map operations. All 
reduce operations can also be executed independently 
similar to map operations. 
4.2 USES OF MAP REDUCE 
At Google: 
  – Index building for Google Search 
  – Article clustering for Google News 
  – Statistical machine translation 
At Yahoo!: 
  – Index building for Yahoo! Search 
  – Spam detection for Yahoo! Mail 
 At Facebook: 
  – Ad optimization 
  – Spam detection 
 

5.IMPLEMENTATION 
5.1 A MAPREDUCE WORKFLOW 
When we write a MapReduce workflow, we’ll have to 
create 2 scripts: the mapscript, and the reduce script. The 
rest will be handled by the Amazon ElasticMapReduce 
(EMR) framework. 
When we start a map/reduce workflow, the framework will 
split the input into segments, passing each segment to a 
different machine. Each machine then runs the map script 
on the portion of data attributed to it. 
The map script (which you write) takes some input data, 
and maps it to <key, value>pairs according to your 
specifications. For example, if we wanted to count word 
frequencies in a text, we’d have <word, count> be our <key, 
value> pairs.  
MapReduce then would emit a <word, 1> pair for each 
word in the input stream. Note that the map script does no 
aggregation (i.e. actual counting) this is what the reduce 
script it for. The purpose of the map script is to model the 
data into <key,value> pairs for the reducer to aggregate. 
Emitted <key, value> pairs are then “shuffled” (to use the 
terminology in the diagram below), which basically means 
that pairs with the same key are grouped and passed to a 
single machine, which will then run the reduce script over 
them.The reduce script (which you also write) takes a 
collection of <key, value> pairs and“reduces” them 
according to the user‐specified reduce script. 
 In our word count example, we want to count the number 
of word occurrences so that we can get frequencies. Thus, 
we’d want our reduce script to simply sum the values of the 
collection of <key, value> pairs which have the same key. 
 The Figure word count example below illustrates the 
described scenario nicely 

 
Figure  5.1 Word Count Example 
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5.2 WORDCOUNT MAPPER 
public static class MapClass extends MapReduceBase  
implements Mapper<LongWritable, Text, Text, 
IntWritable>  
{  
private final static IntWritable one = new IntWritable(1);  
private Text word = new Text();  
public void map(LongWritable key, Text value,  
OutputCollector<Text, IntWritable> output,  
Reporter reporter) throws IOException {  
String line = value.toString();  
StringTokenizer itr = new StringTokenizer(line);  
while (itr.hasMoreTokens()) {  
word.set(itr.nextToken());  
output.collect(word, one);  
}  
}  
}  
 
5.3 WORDCOUNT REDUCER 
public static class Reduce extends MapReduceBase  
implements Reducer<Text, IntWritable, Text,  
IntWritable>  
{  
public void reduce(Text key, Iterator<IntWritable> values,  
OutputCollector<Text, IntWritable> output,  
Reporter reporter) throws IOException {  
int sum = 0;  
while (values.hasNext()) {  
sum += values.next().get();  
}  
output.collect(key, new IntWritable(sum));  
}  
} 
 
5.4 HADOOP JOB EXECUTION 

 
Figure 5.4 Hadoop Job Execution 

 
Hadoop helps us to process huge data sets by distributing 
the replicated forms of same data into several datanodes 
whose information is stored in a namenode server. There is 
a job tracker that splits the job into several tasks each of 
which is handled by a task tracker. The split files are fed 
into mappers where the mapping function works and keys 
and values are generated as (k,v) sets. These are shuffled 
and put to reducers who cumulate or combine the count or 
value of similar data sets there by reducing redundancy of 
data. Also several parallel processing can be obtained by 
such a framework. The bottom line is that we divide the job, 
load it in HDFS, employ MapReduce on them, solve them 
in parallel, and write the cumulative results back to the 

HDFS. It ensures a powerful, robust and fault tolerant 
system that can be used to deploy huge data set processing 
as image processing, weather forecasting and genome 
grafting. 
 
5.5 RESULTS 

 
Statistics of Word Count Application 

 
6.CONCLUSION AND FUTURE ENHANCEMENTS 

With the emergence of Clouds and a general increase in the 
importance of data-intensive applications, programming 
models for data-intensive applications have gained 
significant attention: a prominent example being Map-
Reduce. The usability and effectiveness of a programming 
model is dependent upon the desired degree of control in 
the application developement,deployment and execution. 
Hadoop is in general best known for the MapReduce and 
the HDFS components. Hadoop is basically designed to 
efficiently process very large data volumes by linking many 
commodity systems together to work as a parallel entity. In 
other words, the Hadoop philosophy is to bind many 
smaller (and hence more reasonably priced) nodes together 
to form a single, cost-effective compute cluster 
environment.  
Future programming frameworks must allow client systems 
to develop robust, scalable programming models that, while 
relying on parallel computation, abstracts the details of 
parallelism. The end programmer should be exposed only 
with a set of APIs rather than the details of the distributed 
hardware. 
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