
Map Reduce a Programming Model for Cloud
Computing Based On Hadoop Ecosystem

Santhosh voruganti

Asst.Prof CSE Dept ,CBIT,
Hyderabad,India

Abstract— Cloud Computing is emerging as a new
computational paradigm shift.Hadoop MapReduce has
become a powerful Computation Model for processing large
data on distributed commodity hardware clusters such as
Clouds. MapReduce is a programming model developed for
large-scale analysis. It takes advantage of the parallel
processing capabilities of a cluster in order to quickly process
very large datasets in a fault-tolerant and scalable manner.
The core idea behind MapReduce is mapping the data into a
collection of key/value pairs, and then reducing over all pairs
with the same key. Using key/value pairs as its basic data unit,
the framework is able to work with the less-structured data
types and to address a wide range of problems. In Hadoop,
data can originate in any form, but in order to be analyzed by
MapReduce software, it needs to eventually be transformed
into key/value pairs.In this paper we implements MapReduce
programming model using two components: aJobTracker
(masternode) and many TaskTrackers (slave nodes).

Keywords— Cloud Computing, Hadoop Ecosystem, apreduce,
Hdfs,

1.INTRODUCTION
'cloud' is an elastic execution environment of resources
involving multiple stakeholders and providing a metered
service at multiple granularities for a specified level of
quality of service to be more specific, a cloud is a platform
or infrastructure that enables execution of code (services,
applications etc.), in a managed and elastic fashion,
whereas “managed” means that reliability according to
predefined quality parameters is automatically ensured and
“elastic” implies that the resources are put to use according
to actual current requirements observing overarching
requirement definitions implicitly, elasticity includes both
up and downward scalability of resources and data, but also
load balancing of data throughput with Google Docs. Due
this combinatorial capability, these types are also often
referred to as “components”

Cloud) Infrastructure as a Service (IaaS) also referred to
as Resource Clouds provide (managed and scalable)
resources as services to the user in other words, they
basically provide enhanced virtualisation capabilities.
Accordingly, different resources may be provided via a
service interface:Data & Storage Clouds deal with reliable
access to data of potentially dynamic size, weighing
resource usage with access requirements and / or quality
definition.
Examples
Amazon S3, SQL Azure

Compute Clouds provide access to computational resources,
i.e. CPUs. So far, such low-level resources cannot really be
exploited on their own, so that they are typically exposed as
part of a “virtualized environment” (not to be mixed with
PaaS below), i.e. hypervisors. Compute Cloud Providers
therefore typically offer the capability to provide
computing resources (i.e. raw access to resources unlike
PaaS that offer full software stacks to develop and build
applications), typically virtualised, in which to execute
cloudified services and applications. IaaS (Infrastructure as
a Service) offers additional capabilities over a simple
compute service.
Examples
Amazon EC2, Zimory, Elastichosts

(Cloud) Platform as a Service (PaaS): provide
computational resources via a platform upon which
applications and services can be developed and hosted.
PaaS typically makes use of dedicated APIs to control the
behaviour of a server hosting engine which executes and
replicates the execution according to user requests (e.g.
access rate). As each provider exposes his / her own API
according to the respective key capabilities, applications
developed for one specific cloud provider cannot be moved
to another cloud host there are however attempts to extend
generic programming models with cloud capabilities (such
as MS Azure).
Examples
 Force.com, Google App Engine, Windows Azure
(Platform)

Clouds) Software as a Service (SaaS) also sometimes
referred to as Service or Application Clouds are offering
implementations of specific business functions and
business processes that are provided with specific cloud
capabilities, i.e. they provide applications / services using a
cloud infrastructure or platform, rather than providing
cloud features themselves. Often, kind of standard
application software functionality is offered within a cloud.
Examples
Google Docs, Salesforce CRM, SAP Business by Design.
Overall, Cloud Computing is not restricted to Infrastructure
/ Platform / Software as a Service systems, even though it
provides enhanced capabilities which act as (vertical)
enablers to these systems. As such, I/P/SaaS can be
considered specific “usage patterns” for cloud systems
which relate to models already approached by Grid, Web
Services etc. Cloud systems are a promising way to
implement these models and extend them further

Santhosh voruganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3794-3799

www.ijcsit.com 3794

TECHNICAL ASPECTS:
The main technological challenges that can be identified
and that are commonly associated with cloud systems are
Virtualisation is an essential technological characteristic
of clouds which hides the technological complexity from
the user and enables enhanced flexibility (through
aggregation, routing translation).
Multitenancy is a highly essential issue in cloud systems,
where the location of code and / or data is principally
unknown and the same resource may be assigned to
multiple users (potentially at the same time). This affects
infrastructure resources as well as data / applications /
services that are hosted on shared resources but need to be
made available in multiple isolated instances. Classically,
all information is maintained in separate databases or tables,
yet in more complicated cases information may be
concurrently altered, even though maintained for isolated
tenants. Multitenancy implies a lot of potential issues,
ranging from data protection to legislator issues
Security Privacy and Compliance is obviously essential in
all systems dealing with potentially sensitive data and code.
Data Management is an essential aspect in particular for
storage clouds, where data is flexibly distributed across
multiple resources. Implicitly, data consistency needs to be
maintained over a wide distribution of replicated data
sources. At the same time, the system always needs to be
aware of the data location (when replicating across data
centres) taking latencies and particularly work-load into
consideration. As size of data may change at any time, data
management addresses both horizontal and vertical aspects
of scalability. Another crucial aspect of data management is
the provided consistency guarantees (eventual vs. strong
consistency, transactional isolation vs. no isolation, atomic
operations over individual data items vs. multiple data
times etc.).
APIs and / or Programming Enhancements are essential to
exploit the cloud features: common programming models
require that the developer takes care of the scalability and
autonomic capabilities him/ herself, whilst a cloud
environment provides the features in a fashion that allows
the user to leave such management to the system
Metering of any kind of resource and service consumption
is essential in order to offer elastic pricing, charging and
billing. It is therefore a precondition for the elasticity of
cloud.Tools are generally necessary to support
development, adaptation and usage of cloud services

2.RELATED WORK
2.1 HADOOP
Hadoop is an open-source framework for writing and
running distributed applications that process very large data
sets. There has been a great deal of interest in the
framework, and it is very popular in industry as well as in
academia. Hadoop cases include: web indexing, scientific
simulation, social network analysis, fraud analysis,
recommendation engine, ad targeting, threat analysis, risk
modeling and other. Hadoop is core part of a cloud
computing infrastructure and is being used by companies
like Yahoo, Facebook, IBM, LinkedIn, and Twitter. The

main benefits of Hadoop framework can be summarized as
follows:
 Accessible: it runs on clusters of commodity servers
 Scalable: it scales linearly to handle larger data by adding

nodes to the cluster
Fault-tolerant: it is designed with the assumption of

frequent hardware failures
 Simple: it allows user to quickly write efficiently parallel

code
 Global: it stores and analyzes data in its native format
Hadoop is designed for data-intensive processing tasks and
for that reason it has adopted a move- code-to-data"
philosophy. According to that philosophy, the programs to
run, which are small in size,Are transferred to nodes that
store the data. In that way, the framework achieves better
performance and resource utilization. In addition,
Hadoop solves the hard scaling problems caused by large
amounts of complex data. As the amount of data in a
cluster grows, new servers can be incrementally and
inexpensively added to store and analyze it.
Hadoop has two major subsystems: the Hadoop Distributed
File System (HDFS) and a distributed data processing
framework called MapReduce. Apart from these two main
components, Hadoop has grown into a complex ecosystem,
including a range of software systems. Core related
applications that are built on top of the HDFS are presented
in Figure 2.1 and a short description per project is given in
Table 2.1.1.

Figure 2.1: Hadoop Ecosystem

Project Info

Hdfs Hadoop distributed file system

Map reduce Distributed computation framework

Zookeeper High-performance collaboration service

Hbase Column-oriented table service

Pig Dataflow language and parallel execution

Hive Data warehouse infrastructure

Hcatalog Table and storage management service

Sqoop Bulk data transfer

Avron Data serialization system

Table 2.1.1: Project Descriptions

Figure 2.1.2 A Typical Hadoop cluster

Santhosh voruganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3794-3799

www.ijcsit.com 3795

3. HDFS
Hadoop comes with a distributed file system called HDFS
which stands for Hadoop Distributed File System. HDFS
manages the storage of files across the cluster and enables
global access to them.In comparison to other distributed
file systems, HDFS is on purpose implemented to be fault-
tolerant, and to conveniently expose the location of data
enabling Hadoop framework to take advantage of the
move-code-to-data philosophy.HDFS is optimized for
storing large files, for streaming the files at high bandwidth,
for running in commodity hardware. While HDFS is not
performing well when the user application requires low-
latency data access, when there are a lot of small files, and
when the application requires arbitrary file modification.
The file system is architected using the pattern write-once,
read-many-times (simple coherency model). A dataset is
generated once, and multiple analyses are performed on it
during time. It is expected that the analysis will require the
whole dataset, hence fully reading the dataset is more
important than the latency of a random read.
In HDFS, files are broken into block-sized chunks, which
are independently distributed in a nodes. Each block is
saved as a separate file in the node's local file system. The
size of the block is large and a typical value would be
128MB, but it is a value chosen per client and per file. The
large size of the block was picked, firstly, in order to take
advantage of sequential I/0 capabilities of disks, secondly
to minimize latencies because of random seeks and finally
because it is logical input size to the analysis framework.
HDFS is also designed to be fault tolerant, which means
that each block should remain accessible in the occur of
system failures. The fault-tolerance feature is implemented
through a replication mechanism. Every block is stored in
more than one node making highly unlikely that it can be
lost.By default, two copies of the block are saved on two
different nodes in the same rank and a third copy in a node
located in a different rank. The HDFS software continually
monitors the data stored on the cluster and in case of a
failure (node becomes unavailable, a disk drive fails, etc.)
automatically restores the data from one of the known good
replicas stored elsewhere on the cluster.
3.1 NAMENODE
The namespace of the filesystem is maintained persistently
by a master node called namenode.Along with the
namespace tree, this master node holds and creates the
mapping between file blocks and datanodes. In other words,
namenode knows in which node the blocks of a file are
saved (physical location). The mapping is not saved
persistently because it is reconstructed from the datanodes
during start phase, and because it dynamically changes over
time. The internal structure of a namenode is given in the
Figure 3.1

Figure 3.1 Namenode

Holding the critical information (namespace, file metadata,
mapping) in a unique master node rather node than in a
distributed way makes the system simpler. However, at the
same time it makes this node a single point of failure
(SPOF) and creates scalability issues. From performance
point of view, it is required that the namenode holds the
namespace entirely in RAM and that it will respond fast to
a client request. For reliability, it is necessary for the
namenode to never fail, because the cluster will not be
functional. The information that is stored in the namenode
should also never be lost, because it will be impossible to
reconstruct the files from the blocks. For the above
reasons,Great effort has been made in order to maintain the
master node, but at the same time to overcome the
drawbacks. In past versions, it was a common tactic to
backup the information either in a remote NFS mount or
using a secondary namenode in which the namespace
image was periodically merged and could replace the
original in case of failure.
3.2 DATANODE
As has been implied before, the blocks of a file are
independently stored in nodes, which are called datanodes.
Every datanode in the cluster, during startup, makes itself
available to the name node through a registration process.
A part from that, each datanode informs namenode which
blocks has in its possession by sending a block report. A
block reports are sent periodically or when a change takes
place. Furthermore, every datanode sends heartbeat
messages to the namenode to confirm that it remains
operational and that the data is safe and available. If a
datanode stops operating, there are error mechanisms in
order to overcome the failure and maintain the availability
of the block.Heartbeat messages also hold extra
information, which helps the namenode run the cluster
efficiently (e.g. storage capacity which enables namenode
to make load balancing). One important architectural note
is that namenode never directly calls datanodes; it uses
replies to heartbeats to order a command to be executed in
the datanode (e.g. to transfer a block to another node).

Figure 3.2.1 HDFS Architecture

4. MAP REDUCE

MapReduce programming model using two components: a
Job Tracker (masternode) and many Task Trackers (slave
nodes). The Job Tracker is responsible for accepting job
requests,for splitting the data input, for defining the tasks
required for the job, for assigning those tasks to be
executed in parallel across the slaves, for monitoring the
progress and finally for handling occurring failures. The

Santhosh voruganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3794-3799

www.ijcsit.com 3796

Task Tracker executes tasks as ordered by the master node.
The task can be either a map (takes a key/value and generates
another key/value) or a reduce (takes a key and all associated
values and generates a key/value pair). The map function can run
independently on each key/value pair, enabling enormous
amounts of parallelism. Likewise, each reducer can also run
separately on each key enabling further parallelism.When a job is
submitted to the Job Tracker, the Job Tracker selects a number of
Task Trackers (not randomly but according to data locality) to
execute a map task (Mappers) and a number of Task Trackers to
execute a reduce task (Reducers). The job input data is divided
into splits and is organized as a stream of keys/values records. In
each split there is a matching mapper which converts the original
records into intermediate results which are again in the form of
key/value. The intermediate results are divided into partitions
(each partition has a range of keys), which after the end of the
map phase are distributed to the reducers .Finally reducers apply a
reduce function on each key.

4.1 MAP REDUCE COMPUTATION
A MapReduce paradigm is given in Figure 4.1 MapReduce
is designed to continue to work in the face of system
failures. When a job is running, MapReduce monitors
progress of each of the servers participating in the job. If
one of them is slow in returning an answer or fails before
completing its work, MapReduce automatically starts
another instance of that task on another server that has a
copy of the data. The complexity of the error handling
mechanism is completely hidden from the programmer.

Figure 4.1 A Map Reduce Computation

 MapReduce is triggered by the map and reduce operations
in functional languages,such as Lisp. This model abstracts
computation problems through two functions: map and
reduce. All problems formulated in this way can be
parallelized automatically.Essentially, the MapReduce
model allows users to write map/reduce components with
functional-style code. These components are then
composed as a dataflow graph to explicitly specify their
parallelism. Finally, the MapReduce runtime system
schedules these components to distributed resources for
execution while handling many tough problems:
parallelization, network communication, and fault tolerance.
A map function takes a key/value pair as input and
produces a list of key/value pairs as output. The type of
output key and value can be different from input:
map :: (key1; value1) list(key2; value2)… (1)
A reduce function takes a key and associated value list as
input and generates a list of new values as output:
reduce :: (key2; list(value2)) -> list(value3)… (2)

A MapReduce application is executed in a parallel manner
through two phases. In the first phase, all map operations
can be executed independently from each other. In the
second phase, each reduce operation may depend on the
outputs generated by any number of map operations. All
reduce operations can also be executed independently
similar to map operations.
4.2 USES OF MAP REDUCE
At Google:
 – Index building for Google Search
 – Article clustering for Google News
 – Statistical machine translation
At Yahoo!:
 – Index building for Yahoo! Search
 – Spam detection for Yahoo! Mail
 At Facebook:
 – Ad optimization
 – Spam detection

5.IMPLEMENTATION
5.1 A MAPREDUCE WORKFLOW
When we write a MapReduce workflow, we’ll have to
create 2 scripts: the mapscript, and the reduce script. The
rest will be handled by the Amazon ElasticMapReduce
(EMR) framework.
When we start a map/reduce workflow, the framework will
split the input into segments, passing each segment to a
different machine. Each machine then runs the map script
on the portion of data attributed to it.
The map script (which you write) takes some input data,
and maps it to <key, value>pairs according to your
specifications. For example, if we wanted to count word
frequencies in a text, we’d have <word, count> be our <key,
value> pairs.
MapReduce then would emit a <word, 1> pair for each
word in the input stream. Note that the map script does no
aggregation (i.e. actual counting) this is what the reduce
script it for. The purpose of the map script is to model the
data into <key,value> pairs for the reducer to aggregate.
Emitted <key, value> pairs are then “shuffled” (to use the
terminology in the diagram below), which basically means
that pairs with the same key are grouped and passed to a
single machine, which will then run the reduce script over
them.The reduce script (which you also write) takes a
collection of <key, value> pairs and“reduces” them
according to the user‐specified reduce script.
 In our word count example, we want to count the number
of word occurrences so that we can get frequencies. Thus,
we’d want our reduce script to simply sum the values of the
collection of <key, value> pairs which have the same key.
 The Figure word count example below illustrates the
described scenario nicely

Figure 5.1 Word Count Example

Santhosh voruganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3794-3799

www.ijcsit.com 3797

5.2 WORDCOUNT MAPPER
public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text,
IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
}
}
}

5.3 WORDCOUNT REDUCER
public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text,
IntWritable>
{
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}

5.4 HADOOP JOB EXECUTION

Figure 5.4 Hadoop Job Execution

Hadoop helps us to process huge data sets by distributing
the replicated forms of same data into several datanodes
whose information is stored in a namenode server. There is
a job tracker that splits the job into several tasks each of
which is handled by a task tracker. The split files are fed
into mappers where the mapping function works and keys
and values are generated as (k,v) sets. These are shuffled
and put to reducers who cumulate or combine the count or
value of similar data sets there by reducing redundancy of
data. Also several parallel processing can be obtained by
such a framework. The bottom line is that we divide the job,
load it in HDFS, employ MapReduce on them, solve them
in parallel, and write the cumulative results back to the

HDFS. It ensures a powerful, robust and fault tolerant
system that can be used to deploy huge data set processing
as image processing, weather forecasting and genome
grafting.

5.5 RESULTS

Statistics of Word Count Application

6.CONCLUSION AND FUTURE ENHANCEMENTS

With the emergence of Clouds and a general increase in the
importance of data-intensive applications, programming
models for data-intensive applications have gained
significant attention: a prominent example being Map-
Reduce. The usability and effectiveness of a programming
model is dependent upon the desired degree of control in
the application developement,deployment and execution.
Hadoop is in general best known for the MapReduce and
the HDFS components. Hadoop is basically designed to
efficiently process very large data volumes by linking many
commodity systems together to work as a parallel entity. In
other words, the Hadoop philosophy is to bind many
smaller (and hence more reasonably priced) nodes together
to form a single, cost-effective compute cluster
environment.
Future programming frameworks must allow client systems
to develop robust, scalable programming models that, while
relying on parallel computation, abstracts the details of
parallelism. The end programmer should be exposed only
with a set of APIs rather than the details of the distributed
hardware.

REFERENCES:
[1] Chris Miceli et al., Programming Abstractions for Data Intensive

Computing on Clouds and Grids, 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2009.

[2] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data
processing on large clusters. In OSDI’04: Sixth Symposium on
Operating System Design and Implementation (December 2004).

[3] Shantenu Jha, Daniel S. Katz, Andre Luckow, Andre
Merzky,Katerina Stamou, Understanding Scientific Applications For
Cloud Environments,2009.

[4] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic,
I.(2009). Cloud computing and emerging IT platforms: Vision,hype,
and reality for delivering computing as the 5thutility, Future
Generation Computer Systems—The InternationalJournal of Grid
Computing: Theory Methods andApplications 25(6): 599–616.

[5] Chao Jin and Rajkumar Buyya, MapReduce Programming Model
for.NET-based Cloud Computing, The University of Melbourne,
Australia.

[6] H. Liu and D. Orban, “Cloud mapreduce: a mapreduce
implementation on top of a cloud operating system,”
AccentureTechnology Labs, Tech. Rep., 2009.

Santhosh voruganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3794-3799

www.ijcsit.com 3798

[7]. B.Thirmala Rao, N.V.Sridevei, V. Krishna Reddy, LSS.Reddy.
Performance Issues of Heterogeneous Hadoop Clusters in Cloud
Computing. Global Journal Computer Science & Technology Vol.
11, no. 8, May 2011,pp.81-87.

[8] Apache Hadoop. http://hadoop.apache.org.
[9] C. Jin, C. Vecchiola and R. Buyya. MRPGA: An Extension of

MapReduce for Parallelizing Genetic Algorithms. In Proc. of 4th
International Conference on e-Science, 2008

[10] S. Bardhan and D.A.Menasce, ´Queuing Network Models to Predict
the Completion Time of the Map Phase of MapReduce Jobs, CMG
Intl. Conf., LasVegas, NV, Dec. 3-7, 2012

[11] Herodotos Herodotou, Fei Dong, and Shivnath Babu, No one (cluster)
size fits all: automatic cluster sizing for data-intensive analytics,
Proc.2nd ACM Symposium on Cloud Computing, ACM,2011.

[12] Xuan Wang,Clustering in the cloud:Clustering Algorithms to
Hadoop Map/Reduce Framework" (2010),Published by Technical
Reports-Computer Science by Texas State University.

[13] Huan Liu and Dan Orban, Cloud MapReduce: a MapReduce
Implementation on top of a Cloud Operating System. Published in
Cluster, Cloud and Grid Computing(CCGrid) 2011,11th IEEE/ACM
International Symposium.

[14] S. Vijayakumar, A. Bhargavi, U. Praseeda, and S. Ahamed,
“Optimizing sequence alignment in cloud using hadoop and mpp
database,” in CloudComputing (CLOUD), 2012 IEEE 5th
International Conference on, june 2012, pp. 819–827.

[15] Mastering in cloud computing text book by Rajkumar Buyya
publisher :Morgan Kaufmann may 2013

Santhosh voruganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3794-3799

www.ijcsit.com 3799

